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Summary

A new concept for air traffic management in the terminal
area, implemented as the Center-TRACON Automation
System, has been under development at NASA Ames

in a cooperative program with the FAA since 1991. The
development has been strongly influenced by concurrent
simulation and field site evaluations. Therole of simula
tion and field activities in the devel opment process will
be discussed. Results of recent simulation and field tests
will be presented.

Introduction

A system for the automated management and control of
terminal areatraffic to improve productivity, referred to
asthe Center-TRACON Automation System (CTAS), is
being developed at NASA Ames Research Center under a
joint program with the FAA (ref. 1). CTAS consists of
three types of integrated tools that provide computer-
generated advisories for both en-route and terminal

area controllers to manage and control arrival traffic
efficiently. Thefirst tool, the Traffic Management
Advisor (TMA), generates runway assignments, landing
sequences, and landing times for all arriving aircraft,
including those originating from nearby feeder airports
(ref. 2). TMA also assistsin runway configuration control
and flow management. The second tool, the Descent
Advisor (DA), generates clearances for the en-route
controllers handling arrival flows to metering gates

(ref. 3). The DA’ s clearances ensure fuel-efficient and
conflict free descents to the metering gates at specified
crossing times. The third tool, the Final Approach
Spacing Tool (FAST) provides terminal area controllers
with heading and speed advisories to help produce an
accurately spaced flow of aircraft onto the final approach
course (ref. 4).

The underlying premise behind the design of CTAS has
been that successful planning of traffic in capacity
constrained airspace requires the ability to accurately
predict future traffic situations. The technology for
accurate prediction of trajectories was developed in the
early 1970s and has been incorporated in modern flight
management systems. Data bases consisting of several
hundred aircraft performance models, airline preferred

operational procedures and a three dimensiona wind
model support the trajectory prediction capabilities within
CTAS. (Thisisdiscussed in ref. 7.)

The primary research effort within CTAS has been the
design of a set of automation tools that make use of this
trajectory prediction capability to assist the controller in
overall management of traffic. The two criteria upon
which successis judged are controller acceptance and
improvement in traffic flow as measured by reduced
delays and improved aircraft operating efficiencies.
Because of the complexity of the air space system, the
approach taken has been to adopt a“design alittle, test a
lot” philosophy with real-time simulation and field testing
included as an integral part of the design process. Analy-
sis of real-time data and fast-time simulation methods are
used to extrapolate the results of the field tests.

The purpose of this paper isto review the process used in
the development of CTAS and provide examples of the
role of real-time simulation, field testing, and fast-time
simulation. The paper will first discuss the overall
technical approach. To illustrate the approach, the FAST
development will be reviewed. The DA tool is somewhat
different from FAST in that it allows more strategic
control. This hasled to some differencesin the DA
development approach that will be discussed.

Technical Approach

The overall technical approach is shown in figure 1.
Instead of following the more traditional sequential-
approach, the requirements, design, simulation, and
operational tests are conducted concurrently with ahigh
level of interaction. Analysis of real-time simulation and
live traffic data are used with fast-time simulation to
quantify and extrapolate the performance of the system.
A primary advantage of this approach is the involvement
of controllers and pilots throughout the development.

The research facility established to support this approach
isillustrated in figure 2. The primary ATC simulation was
developed at Ames. It includes an air traffic simulation
using pseudo-pilots and an ATC facility simulation.

Both are hosted on a network of workstations. To study
controller display integration issues, two terminal area
radar displays (Fully Digital ARTS Display System,
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Figure 1. Programmatic approach.

FDADS) areintegrated into the network. To investigate
specific air-ground communication and traffic manage-
ment issues, links were established with existing full
piloted simulators located at the Ames and Langley
Research Centers. To understand actual traffic situations
and to support shadowing evaluations, live radar con-
nections were established, first with Denver Center and
then expanded to include the Fort Worth Center and the
Dallag/Fort Worth terminal area (TRACON). To under-
stand weather and evaluate its effect on the trajectory
prediction capability of CTAS, connections were estab-
lished to receive weather information for both the Denver
and Dallas/Fort Worth areas. We are currently receiving
“rapid update cycle” weather data. Field tests are under
way at Denver and Dallas.

Application to Development of FAST

The steps taken in the FAST development areillustrated
in figure 3. Fast-time simulation, real-time simulation,
and live traffic testing in shadow-mode have been used
throughout the development (ref. 5). Operational testing
has been maintained as a target but has been delayed until
the system design issues identified in simulation and
shadow-mode testing are resolved. Controllers have been

involved throughout the process. Initia studies considered
ageneric airspace designed to evaluate basic concepts.
Asthe program progressed, the effort addressed more
realistic environments based on the Denver and
Dallas/Fort Worth areas.

FAST Description

FAST isatool for aiding the terminal area controller in
setting up the optimal landing sequence, selecting the
most appropriate runway and providing the controller
with turn and speed advisories to produce an accurately
spaced flow of aircraft onto the final approach course
(ref. 4). The sequence and runway advisors are referred
to as“passive FAST.” Theturn and speed advisories are
referred to as“ active FAST.” Both passive and active
FAST advisories are based on trajectories that have
been computed to be conflict free for the duration of the
flight path. These trajectories and advisories are con-
tinually updated based on new radar track data (every
4.7 seconds) and on inference of controller intent. More
details on FAST are contained in references 4 and 6.
The trajectory prediction computations are reviewed in
reference 7.
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Figure 3. FAST development process.

As an example of the development process, we will
review the developments of the sequence and scheduling
logic and the runway allocation logic.

Sequencing and Scheduling Algorithm

The sequencing and scheduling problem addressed within
FAST areillustrated in figure 4. In the initial design, the
sequence and schedul e were optimized to assure mini-
mum delays based on separations at the threshold. The
speed and turn advisories were computed to assure
efficient and conflict free flight (ref. 8). To achieve
minimum delays, the system would allow overtakes
upstream in the traffic flow. As the smulation was
adapted to be more representative of Denver and Dallas/
Fort Worth, it became apparent that additional sequence
constraints would be required to allow the controller to
maintain a coherent view of the traffic situation. This

led to the development of atrajectory segment based
ordering logic that under certain conditions would
maintain sequences established prior to merging on final
(refs. 4 and 6). The segment based ordering method
allows the overtake of one aircraft by another if thereisa
sufficient reduction in delay but it restricts the conditions
under which this reordering may occur. The logic for the
reordering was derived from over 2000 hours of rea-time
simulations involving controllers from Dallas/Fort Worth.
It isimbedded in the CTAS code in the form of fuzzy
logic. An example of the resulting logic for areordering

isshown in figure 5. Without going into the details, the
logic for determining whether to allow an overtake
depends on the relative position of two aircraft scheduled
for the same segment in the TRACON (i.e., downwind,
final, etc.), their speed differences, and the potential delay
savings. If thetrailing aircraft falls above the curvein
figure5, it is rescheduled. Subsequent analysis and
fast-time simulation have shown that these additional
constraints impose a negligible penalty on overall
performance.

Runway Allocation

The runway allocation algorithm has evolved from an
initial algorithm that was designed to optimize asingle
functional (ref. 9), to an algorithm that is more consistent
with current procedures, provides improved controller
awareness, and allows consideration of multiple perfor-
mance metrics (refs. 4 and 6). The current method begins
with anominal runway assignment based on published
procedures at the particular airport. A decisiontreeis
entered which branches through alternative runways,
entry gate to the TRACON, aircraft type, and finally ends
with aminimum global delay reduction required for a
runway change. The overall benefit due to arunway
change is computed and compared with the predeter-
mined minimum delay reduction. If the delay reduction
exceeds the minimum delay, the change is made.
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Figure 5. Knowledge based sequencing decision curves.

Real-time simulation and shadow mode operation

have demonstrated the value of the runway allocation
algorithm in two areas. The most significant improvement
has been in elevating the performance of all controller
crews to that of the best controller crews. Based on real -
time analysis, to be discussed later, thereisalarge
variation in the utilization of multiple runways as a
function of different controller teams. A second area of
improvement, even for the better controller teams, has
been the identification of runway changes based on traffic
information not available to the specific sector controller.
Thisisillustrated in figure 6. The arrival sector controller
may not be aware of the additional traffic coming in on

the upper right side and as aresult assign the aircraft on
the lower right to the left runway. Due to amore global
awareness of traffic, FAST would be able to determine an
advantage in switching the aircraft to the right runway.

Human Factor s Assessments

The CTAS development has incorporated the expertise

of the end-user from the very beginning. The design has
been guided by the premise that automation should extend
acontroller’ s ability to manage traffic rather than change
acontroller’ s overall responsibilities.
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To maintain this focus, a human factors team was
assembled by the FAA Liaison Office at Amesto work
directly with the engineering staff. Additionally, the FAA
established ateam of experienced and highly skilled
controllers to work with the team. Controller acceptance
has been evaluated through observation, conducting
interviews, recording the number of communications,
and taking controller evaluations using various rating
scales. In an attempt to standardize controller ratings a
“Controller Acceptance Rating Scale (CARS),” isbeing
developed (ref. 5). An early version of the CARS is
shown in figure 7. Theideais borrowed from the “Cooper
Harper Rating” that has been very successful in standard-
izing pilot ratings for aircraft handling qualities (ref. 10).

Analysis of Real-Time Data

So far, we have been discussing the development process.
To understand whether the concept will provide benefit,
techniques for analyzing real-time data are required to
assure that the system will perform as expected in the
real-world and to assist in quantifying potential benefits
through use with fast-time simulation.

The real-time analysis conducted in support of CTAS s
to be published thisfall in an article by M. Ballin and

H. Erzberger (ref. 11). Two examples of thisanalysisare
included here. First isthe method used to calculate the
arrival time errors at the feeder-fix into the terminal area.
Based on fast-time simulation, Erzberger and Neuman
have shown that the magnitude of these errors directly
affect the portion of total delay that should be absorbed
in the terminal areaor TRACON (refs. 12 and 13). The

second is the method used to measure inter-arrival
spacing at the threshold for different aircraft combina-
tions, i.e. heavy followed by heavy, large followed by
small, etc. These data are necessary to understand the
delay reduction potential of improved sequencing and
spacing and runway assignment.

Figure 8 shows a composite plot of flightsinto DFW
taken over a 140 minute interval involving amajor rush.
A program has been developed to assist developersin
analyzing these data (ref. 14). The analysis program is
constructed so that the CTAS estimated time of arriva
(ETA) at the feeder fix, computed at any point along the
trajectory, can be compared with the actual crossing time.
The program is further refined so that aresearcher can
call up a specific trajectory to identify possible causes of
any major error in the ETA. Thistool has been invaluable
in improving the overall robustness of the trajectory
prediction algorithms.

An example of the use of thistool for obtaining statistical
dataon ETA errorsis shown in figure 9. It should be
noted that the curve appears to be the superposition of
two error sources, one with a Gaussian distribution and
one with a Poisson distribution. If the Gaussian portionis
attributed to errorsin the ETA calculations where the
flight is not affected by controller-induced delays and the
Poisson portion is attributed to delays inserted to coordi-
nate traffic flow, we can make afirst order estimate of
ETA accuracy achievable with an effective traffic
management tool.

Figure 10 shows a composite plot of flightsinto the
terminal area. Here it is much more difficult to auto-
matically sort through the data to achieve meaningful
statistical resultsregarding ETA’s at the threshold or
estimates of theinter-arrival spacing. The tool must
ignore all aircraft that are not landing, and it must identify
the most likely runway for each landing aircraft. The
greater the number of mistakes, the less valid the analysis.

Shown in figure 11 is an example histogram of inter-
arrival spacing for aircraft having alegal separation of
2.5 n. mi. The few cases where separations were less than
2.5 n. mi. do not imply violations. Under current rules, as
soon as the pilot has the runway in view, the pilot can
declare VFR. Again, the curve seemsto be a superposi-
tion of a Gaussian and Poisson distribution. In this case,
it is assumed that the Gaussian portion represents the
controller precision in spacing aircraft onto the final
approach path given a steady stream of traffic and the
Poisson portion represents those pairs where there were
natural gaps. From these data, we can infer the controller
target point, the errors that can be expected about the
target point, and the buffer that can be used to model the
controller’s behavior. The potential for improvement
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Redar iracks of arriving alreratt in the Centar serving DEW.

Figure 8. Composite of Center flights feeding DFW.
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is computed based on the expectation of achieving a
reduced variance and buffer through the use of FAST
advisories and the elimination of unnecessary gaps by
improved runway balancing and delivery of aircraft into
thetermina area

Fast-Time Simulation

In contrast to real-time simulations, fast-time simulations
permit examining the outcomes for many traffic periods
with the same statistical parameters (ref. 12).

To facilitate fast-time simulation, a statistical model of
the arrival traffic flow, amodel of the runway and feeder
fix configuration, and a model of the scheduler and
automation tools must be developed. For these tests, the
model is based on DFW using two runways. The traffic
flow model is made up of four uniform distributions of
traffic entering via the feeder fixesinto the terminal area
and scaled to represent atypical rush. The resulting traffic
flows appear very similar to those observed at DFW. The
traffic model can be scaled to represent different levels of
traffic, tailored to represent different densities at individ-
ual gates, and constructed to be composed of specified
percentages of aircraft types. The air traffic control model
includes a set of simplifying assumptions. The simplifica-
tions include the use of fixed time based separation con-
straints at the threshold and meter fix, constant times for
an aircraft to fly between the feeder-fix and the runway as

afunction of gate, asafunction of runway assignment
and aircraft type. It also assumes a fixed penalty in
traversal time for arunway change. Accuracy’s associated
with meter-fix crossing times and inter-arrival spacing
can be adjusted to understand the benefits that are
achievable with different levels of automation.

A summary of the types of results that are computed
using the simulation is shown in figure 12. Shown isthe
expected delay reduction as afunction of arrival rate for
different levels of automation. The baseline represents a
traffic flow that is equally balanced between the two
runways. The curve labeled knowledge based runway
alocation, KBRA, shows the improvement achievable by
allowing switches to the runway assignment to even out
irregularities in the prearranged flow to the two runways.
Similarly, the curve labeled “ Active FAST” shows the
further improvement due to more precise control of spac-
ing on final. In recent studies, Erzberger and Neuman
have used fast-time simulation to study the effect of
errorsin the meter-fix crossing time on (1) total delay and
(2) the alocation of total delay between the Center and
the terminal area (TRACON). The basicideaisthat in
the absence of uncertainty in the meter fix crossing time,
none of the delay should be taken in the TRACON due
to increased fuel burn rate at low altitudes. However, as
errors are introduced into the meter-fix crossing time, if
some delay is not allocated to the TRACON there may be
amissed landing opportunity or at least an unnecessarily
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Figure 12. Delay reduction potential of CTAS.
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large gap in the arrivals. Thiswill result in larger total
delays and increased total cost. This study will be pre-
sented as a subject of an AGARD lecture seriesto be
presented by Dr. Erzberger later this year (ref. 13).

Differencesin Development Approach
Applied to DA

Although the DA development has been very similar to
that taken in FAST, there are some fundamental differ-
ences. The mgjor differenceisthat DA attemptsto
develop strategic clearances requiring few changes during
the descent. This places a more stringent requirement on
the trgjectory prediction accuracy and hasled to (1) the
inclusion of pilots as well as controllers throughout the
development process and (2) the conduction of limited
field evaluations at an FAA facility during the early
phases of development to validate procedures and
trajectory prediction accuracy.

DA Description

The Descent Advisor is a set of automation toolsto assist
the controller in delivering aircraft to the meter fix at a
specified time and with specified crossing restrictionsin a
manner consistent with preferences of the aircraft opera-
tor. The advisories are computed to be consistent with the
specific aircraft performance and on-board equipment
(flight management system, FMS, or non-FM S) and com-
puted to be conflict free for the duration of the trajectory.
The advisories are refreshed based on continuous analysis
of new radar data and detection of non-conformance to
clearances. The advisories include cruise Mach number,
descent speed profile, top of descent for non-FMS
equipped aircraft, path stretching and route off-set, and
direct-to heading advisors for non-FM S equipped aircraft.
To illustrate the difference in approach between DA and
FAST, we will review the recent field test conducted at
the Denver Center.

DA Field Test, September 1994

The objectives of the field test were to evaluate the ability
of CTASto accurately predict the trajectories resulting
from DA advisories, to evaluate the benefits derivable
from on-board FM S capabilities, and to develop com-
patible air/ground procedures (ref. 15).

Thetest involved 97 United Air Linesflightsinto
Denver and 26 runs using the Langley Research Center’'s
Terminal Systems Research Vehicle (TSRV) aircraft.

The United flights were included to test the robustness

of the system to different aircraft types, different wind
conditions, different crews, and different levels of flight
management equipment. The TSRV wasincluded to
provide detailed information on the winds, and to assess
the accuracy and sources of errorsin the trajectory pre-
diction algorithms. The tests were conducted with air-
speeds varying between 240 and 320 KIAS. Participating
United Airlines flightsincluded B757 and B737 aircraft
equipped with flight management systems and B727 and
B737 without flight management systems. The TSRV was
flown as a conventionally equipped aircraft and an FMS
equipped aircraft.

The test was configured to negate the impact on air traffic
or air carrier operations. The configuration is shown in
figure 13. A DA test station was set up in the Traffic
Management Unit of the Denver en-route center. The
existing CTAS system that supports TMA at Denver was
used. The DA advisories were transmitted to atest engi-
neer located at the sector controller position. The test
engineer passed the advisory to the sector controller in a
written script. The sector controller then issued the
advisory to the participating flight.

An example of a DA advisory for an unequipped aircraft
would be:

“UAL 123, begin descent 70 miles from the
Meeker VORTAC; descend at 280 knots; if
unable advise.”

An example DA advisory for a FMS equipped aircraft
would be:

“UAL 123, descend at pilot’s discretion,
descend at 280 knots; if unable advise.”

The exact phraseology and procedures were carefully
coordinated between the facility and United Airlines.

Examples of the data collected are shown in figure 14.
Both horizontal and vertical profile dataaswell asETA
errors were recorded. The data shown are for an aircraft
with an FM S and for an aircraft without an FMS. A
summary of the accuracy achieved at the meter fix is
shown in table 1 in the form of mean and root mean
square (rms). In all casesthe CTAS prediction was within
20 seconds. The FMSin the TSRV predicted crossing
timeis also shown for comparison.

It should be noted that these data are based on asingle
DA clearance and a prediction approximately 15 minutes
before the meter-fix crossing.

13
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Table 1. Meter fix crossing time accuracy (seconds)

TSRV aircraft UAL
aircraft
Guidance FMS CTAS CTAS
mode prediction prediction prediction
All 8.8mean, -2.3 mean, 2.4 mean,
10.5rms 125 rms 13.1rms
non-FMS  16.8 mean, 1.7 mean, 7.4 mean,
9.4 rms 10.0rms 14.3rms
FMS 49 mean, -6.3mean, —2.5 mean,
9.4 rms 12.4 rms 10.0 rms

As previously noted, fast time analysis has indicated a
strong relation between operational benefits and the accu-
racy with which aircraft are delivered across the meter-
fix. Based on apreliminary extrapolation of this analysis,
the better than 20 second delivery accuracy shown above
to be achievable with DA, together with the benefits
derivable with FAST and TMA are estimated to be in the
order of $33M per year at the DFW airport. These data
are being used by the FAA to develop a comprehensive
assessment of the benefits achievable with CTAS.

Concluding Remarks

Because of the complexity of air traffic control, CTAS
has been developed using a“design alittle, test alot”
philosophy. Controllers and the piloting community have
been involved in the design throughout the program. In
the case of FAST, most operational issues could be
adequately addressed through a combination of real-time
simulation and shadow-mode testing. Operational tests
are scheduled to begin thisfall to validate the concept in
real operationsin anticipation of national deployment. In
the case of DA, the total system performance is highly
dependent on the compatibility between aircraft or pilot
and controller procedures. Issues that will affect system
performance include the adequacy of the aircraft and
wind modeling, and the ability and willingness of the
crew to follow DA advisories. This difference hasled to a
greater involvement by pilots throughout the design and
the initiation of early and non-intrusive field evaluations.

Fast-time simulations and analysis of real-time data are
used to quantify the performance of the system and to
provide a basis for extrapolating limited results from real-
time simulation, shadow-mode testing, and limited field
teststo avariety of casesin a statistically significant
manner.
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Results to date indicate a tremendous operational benefit
through the introduction of CTAS type automation tools.
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